\(\int \frac {1}{x^2 (a+b x^2)^2 \sqrt {c+d x^2}} \, dx\) [764]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 147 \[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=-\frac {(3 b c-2 a d) \sqrt {c+d x^2}}{2 a^2 c (b c-a d) x}+\frac {b \sqrt {c+d x^2}}{2 a (b c-a d) x \left (a+b x^2\right )}-\frac {b (3 b c-4 a d) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 a^{5/2} (b c-a d)^{3/2}} \]

[Out]

-1/2*b*(-4*a*d+3*b*c)*arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))/a^(5/2)/(-a*d+b*c)^(3/2)-1/2*(-2*a*d+
3*b*c)*(d*x^2+c)^(1/2)/a^2/c/(-a*d+b*c)/x+1/2*b*(d*x^2+c)^(1/2)/a/(-a*d+b*c)/x/(b*x^2+a)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {483, 597, 12, 385, 211} \[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=-\frac {b (3 b c-4 a d) \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 a^{5/2} (b c-a d)^{3/2}}-\frac {\sqrt {c+d x^2} (3 b c-2 a d)}{2 a^2 c x (b c-a d)}+\frac {b \sqrt {c+d x^2}}{2 a x \left (a+b x^2\right ) (b c-a d)} \]

[In]

Int[1/(x^2*(a + b*x^2)^2*Sqrt[c + d*x^2]),x]

[Out]

-1/2*((3*b*c - 2*a*d)*Sqrt[c + d*x^2])/(a^2*c*(b*c - a*d)*x) + (b*Sqrt[c + d*x^2])/(2*a*(b*c - a*d)*x*(a + b*x
^2)) - (b*(3*b*c - 4*a*d)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(2*a^(5/2)*(b*c - a*d)^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 483

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*(e*
x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a*d)
*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m + n
*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ
[p, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {b \sqrt {c+d x^2}}{2 a (b c-a d) x \left (a+b x^2\right )}-\frac {\int \frac {-3 b c+2 a d-2 b d x^2}{x^2 \left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 a (b c-a d)} \\ & = -\frac {(3 b c-2 a d) \sqrt {c+d x^2}}{2 a^2 c (b c-a d) x}+\frac {b \sqrt {c+d x^2}}{2 a (b c-a d) x \left (a+b x^2\right )}-\frac {\int \frac {b c (3 b c-4 a d)}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 a^2 c (b c-a d)} \\ & = -\frac {(3 b c-2 a d) \sqrt {c+d x^2}}{2 a^2 c (b c-a d) x}+\frac {b \sqrt {c+d x^2}}{2 a (b c-a d) x \left (a+b x^2\right )}-\frac {(b (3 b c-4 a d)) \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 a^2 (b c-a d)} \\ & = -\frac {(3 b c-2 a d) \sqrt {c+d x^2}}{2 a^2 c (b c-a d) x}+\frac {b \sqrt {c+d x^2}}{2 a (b c-a d) x \left (a+b x^2\right )}-\frac {(b (3 b c-4 a d)) \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{2 a^2 (b c-a d)} \\ & = -\frac {(3 b c-2 a d) \sqrt {c+d x^2}}{2 a^2 c (b c-a d) x}+\frac {b \sqrt {c+d x^2}}{2 a (b c-a d) x \left (a+b x^2\right )}-\frac {b (3 b c-4 a d) \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 a^{5/2} (b c-a d)^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.06 \[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\frac {\sqrt {c+d x^2} \left (2 a b c-2 a^2 d+3 b^2 c x^2-2 a b d x^2\right )}{2 a^2 c (-b c+a d) x \left (a+b x^2\right )}+\frac {b (3 b c-4 a d) \arctan \left (\frac {a \sqrt {d}+b \sqrt {d} x^2-b x \sqrt {c+d x^2}}{\sqrt {a} \sqrt {b c-a d}}\right )}{2 a^{5/2} (b c-a d)^{3/2}} \]

[In]

Integrate[1/(x^2*(a + b*x^2)^2*Sqrt[c + d*x^2]),x]

[Out]

(Sqrt[c + d*x^2]*(2*a*b*c - 2*a^2*d + 3*b^2*c*x^2 - 2*a*b*d*x^2))/(2*a^2*c*(-(b*c) + a*d)*x*(a + b*x^2)) + (b*
(3*b*c - 4*a*d)*ArcTan[(a*Sqrt[d] + b*Sqrt[d]*x^2 - b*x*Sqrt[c + d*x^2])/(Sqrt[a]*Sqrt[b*c - a*d])])/(2*a^(5/2
)*(b*c - a*d)^(3/2))

Maple [A] (verified)

Time = 3.07 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.74

method result size
pseudoelliptic \(\frac {-\frac {\sqrt {d \,x^{2}+c}}{x}+\frac {b c \left (\frac {b \sqrt {d \,x^{2}+c}\, x}{b \,x^{2}+a}-\frac {\left (4 a d -3 b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )}{\sqrt {\left (a d -b c \right ) a}}\right )}{2 a d -2 b c}}{a^{2} c}\) \(109\)
default \(-\frac {\sqrt {d \,x^{2}+c}}{a^{2} c x}+\frac {\frac {b \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{\left (a d -b c \right ) \left (x -\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}}{4 a^{2}}+\frac {\frac {b \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{\left (a d -b c \right ) \left (x +\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}}{4 a^{2}}+\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}-\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}\) \(838\)
risch \(-\frac {\sqrt {d \,x^{2}+c}}{a^{2} c x}+\frac {b \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{4 a^{2} \left (a d -b c \right ) \left (x +\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}+\frac {b \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{4 a^{2} \left (a d -b c \right ) \left (x -\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}-\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}+\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{4 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}\) \(841\)

[In]

int(1/x^2/(b*x^2+a)^2/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/a^2*(-1/x*(d*x^2+c)^(1/2)+1/2*b*c/(a*d-b*c)*(b*(d*x^2+c)^(1/2)*x/(b*x^2+a)-(4*a*d-3*b*c)/((a*d-b*c)*a)^(1/2)
*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2))))/c

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 280 vs. \(2 (127) = 254\).

Time = 0.35 (sec) , antiderivative size = 600, normalized size of antiderivative = 4.08 \[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\left [-\frac {{\left ({\left (3 \, b^{3} c^{2} - 4 \, a b^{2} c d\right )} x^{3} + {\left (3 \, a b^{2} c^{2} - 4 \, a^{2} b c d\right )} x\right )} \sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \, {\left (2 \, a^{2} b^{2} c^{2} - 4 \, a^{3} b c d + 2 \, a^{4} d^{2} + {\left (3 \, a b^{3} c^{2} - 5 \, a^{2} b^{2} c d + 2 \, a^{3} b d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{8 \, {\left ({\left (a^{3} b^{3} c^{3} - 2 \, a^{4} b^{2} c^{2} d + a^{5} b c d^{2}\right )} x^{3} + {\left (a^{4} b^{2} c^{3} - 2 \, a^{5} b c^{2} d + a^{6} c d^{2}\right )} x\right )}}, -\frac {{\left ({\left (3 \, b^{3} c^{2} - 4 \, a b^{2} c d\right )} x^{3} + {\left (3 \, a b^{2} c^{2} - 4 \, a^{2} b c d\right )} x\right )} \sqrt {a b c - a^{2} d} \arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) + 2 \, {\left (2 \, a^{2} b^{2} c^{2} - 4 \, a^{3} b c d + 2 \, a^{4} d^{2} + {\left (3 \, a b^{3} c^{2} - 5 \, a^{2} b^{2} c d + 2 \, a^{3} b d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{4 \, {\left ({\left (a^{3} b^{3} c^{3} - 2 \, a^{4} b^{2} c^{2} d + a^{5} b c d^{2}\right )} x^{3} + {\left (a^{4} b^{2} c^{3} - 2 \, a^{5} b c^{2} d + a^{6} c d^{2}\right )} x\right )}}\right ] \]

[In]

integrate(1/x^2/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(((3*b^3*c^2 - 4*a*b^2*c*d)*x^3 + (3*a*b^2*c^2 - 4*a^2*b*c*d)*x)*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*
a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 + 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c
 + a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 4*(2*a^2*b^2*c^2 - 4*a^3*b*c*d + 2*a^4*d^2 + (3*a*b^
3*c^2 - 5*a^2*b^2*c*d + 2*a^3*b*d^2)*x^2)*sqrt(d*x^2 + c))/((a^3*b^3*c^3 - 2*a^4*b^2*c^2*d + a^5*b*c*d^2)*x^3
+ (a^4*b^2*c^3 - 2*a^5*b*c^2*d + a^6*c*d^2)*x), -1/4*(((3*b^3*c^2 - 4*a*b^2*c*d)*x^3 + (3*a*b^2*c^2 - 4*a^2*b*
c*d)*x)*sqrt(a*b*c - a^2*d)*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d
 - a^2*d^2)*x^3 + (a*b*c^2 - a^2*c*d)*x)) + 2*(2*a^2*b^2*c^2 - 4*a^3*b*c*d + 2*a^4*d^2 + (3*a*b^3*c^2 - 5*a^2*
b^2*c*d + 2*a^3*b*d^2)*x^2)*sqrt(d*x^2 + c))/((a^3*b^3*c^3 - 2*a^4*b^2*c^2*d + a^5*b*c*d^2)*x^3 + (a^4*b^2*c^3
 - 2*a^5*b*c^2*d + a^6*c*d^2)*x)]

Sympy [F]

\[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\int \frac {1}{x^{2} \left (a + b x^{2}\right )^{2} \sqrt {c + d x^{2}}}\, dx \]

[In]

integrate(1/x**2/(b*x**2+a)**2/(d*x**2+c)**(1/2),x)

[Out]

Integral(1/(x**2*(a + b*x**2)**2*sqrt(c + d*x**2)), x)

Maxima [F]

\[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )}^{2} \sqrt {d x^{2} + c} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^2*sqrt(d*x^2 + c)*x^2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 396 vs. \(2 (127) = 254\).

Time = 0.85 (sec) , antiderivative size = 396, normalized size of antiderivative = 2.69 \[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\frac {1}{2} \, d^{\frac {5}{2}} {\left (\frac {{\left (3 \, b^{2} c - 4 \, a b d\right )} \arctan \left (\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{{\left (a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {a b c d - a^{2} d^{2}}} + \frac {2 \, {\left (3 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} b^{2} c - 4 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} a b d - 6 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b^{2} c^{2} + 14 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a b c d - 8 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a^{2} d^{2} + 3 \, b^{2} c^{3} - 2 \, a b c^{2} d\right )}}{{\left ({\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{6} b - 3 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} b c + 4 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} a d + 3 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b c^{2} - 4 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a c d - b c^{3}\right )} {\left (a^{2} b c d^{2} - a^{3} d^{3}\right )}}\right )} \]

[In]

integrate(1/x^2/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

1/2*d^(5/2)*((3*b^2*c - 4*a*b*d)*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a
^2*d^2))/((a^2*b*c*d^2 - a^3*d^3)*sqrt(a*b*c*d - a^2*d^2)) + 2*(3*(sqrt(d)*x - sqrt(d*x^2 + c))^4*b^2*c - 4*(s
qrt(d)*x - sqrt(d*x^2 + c))^4*a*b*d - 6*(sqrt(d)*x - sqrt(d*x^2 + c))^2*b^2*c^2 + 14*(sqrt(d)*x - sqrt(d*x^2 +
 c))^2*a*b*c*d - 8*(sqrt(d)*x - sqrt(d*x^2 + c))^2*a^2*d^2 + 3*b^2*c^3 - 2*a*b*c^2*d)/(((sqrt(d)*x - sqrt(d*x^
2 + c))^6*b - 3*(sqrt(d)*x - sqrt(d*x^2 + c))^4*b*c + 4*(sqrt(d)*x - sqrt(d*x^2 + c))^4*a*d + 3*(sqrt(d)*x - s
qrt(d*x^2 + c))^2*b*c^2 - 4*(sqrt(d)*x - sqrt(d*x^2 + c))^2*a*c*d - b*c^3)*(a^2*b*c*d^2 - a^3*d^3)))

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\int \frac {1}{x^2\,{\left (b\,x^2+a\right )}^2\,\sqrt {d\,x^2+c}} \,d x \]

[In]

int(1/(x^2*(a + b*x^2)^2*(c + d*x^2)^(1/2)),x)

[Out]

int(1/(x^2*(a + b*x^2)^2*(c + d*x^2)^(1/2)), x)